
Three Recommender Approaches to Interface Controls
Reduction

Nathan Oostendorp
University of Michigan School of Information

Ann Arbor, MI 48109
oostendo@umich.edu

Paul Resnick
University of Michigan School of Information

Ann Arbor, MI 48109
presnick@umich.edu

ABSTRACT
Interface Controls Reduction is the design task of generating
simplified interface controls for setting a larger, more complex
set of controls. We explore three different empirical approaches
to the task: preset sharing, point clustering, and principal
component analysis. All three draw on the experience of lead
users to recommend simplified controls for others. A case study
where they were applied as part of an iterative development
cycle with hundreds of users reveals the advantages and
challenges of each approach.

Categories and Subject Descriptors
H5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

General Terms
Design, Experimentation

Keywords
ICR, Slashdot, clustering, principal component analysis, preset

1. INTRODUCTION
“Keep it Simple Stupid” is an often-repeated maxim for
interface design, but one that’s hard to follow. The underlying
functions of the software may involve many user-settable
parameters, implying a need for many controls in the UI. To
avoid complex interfaces, one approach is to hide less-important
controls in nested submenus, “advanced” dialog windows,
tabbed menus, and the like. Another approach, which we calls
“Interface Controls Reduction (ICR)”, is to generate composite
controls for setting a larger, more complex set of controls. In
practice today, designers rely on intuition to choose which
controls to highlight or hide and what reduced composite
controls to make.
More empirical approaches are now becoming practical. Often
software is deployed in stages where different populations of
users are allowed access to products still in development.
Actions can be recorded and analyzed to show patterns of
behavior for these lead users. Whereas users may be willing to

“pay” for beta software by tolerating and reporting bugs and
obvious flaws, it is also practical to assume they would be
willing to share their behavior in the application in order to build
a better product. Moreover, the beta users may also be the most
motivated to explore product features. Thus, rather than
guessing which controls or combinations of them should be
elevated to prominence in the interface, these lead users can be
given a more complex interface with all the individual controls.
Their action can then guide the development of a simpler
interface for other users. Clearly, the lead users are unlike other
users in at least one respect, their willingness to learn and
experiment with complex controls. Despite that difference, their
preferences among interface configurations, after exploration,
may be reasonably representative of the preferences other users
would have, if they, too, incurred the cost of exploration.

We explore three different empirical approaches to Interface
Controls Reduction: preset sharing, clustering, and principal
components analysis (PCA). They are all “recommender
approaches” in that they rely on the explorations and choices of
lead users, who interact with the full set of controls, to
recommend combinations of settings to other users, much as
recommender systems recommend items to users based on the
prior experiences of other users with those items. Two of the
approaches generate “point” outputs, complete configurations
that users can select. The third, PCA, generates “vector” outputs
which can be turned into controls such as sliders and knobs that
users can interact with.
We first present a hypothetical example, audio equalizer
settings, and a real case study, contextual filter settings for the
online discussion system at SlashDot. Then we explain each of
the three empirical approaches and illustrate with respect to the
hypothetical example and the case study. Each section includes a
discussion of the challenges in applying that approach. Since we
do not think it will always be possible to overcome these
challenges, each section also discusses the types of applications
the technique is suited to, those where the challenges can be
overcome or it is not essential to do so.

1.1 Related work
Presets are a widely deployed interface element. The
import/export feature that enables their sharing is less common,
however.

The applications of clustering and PCA described here are
novel, but have some interesting antecedents. PCA and the
related techniques of Singular Value Decomposition and Factor
Analysis have been used in information retrieval [1], and in
recommender algorithms [2-4]. Perhaps the closest in spirit to
our own work is an analysis of UNIX command-line usage using

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
RecSys’08, October 23–25, 2008, Lausanne, Switzerland.
Copyright 2008 ACM 978-1-60558-093-7/08/10...$5.00.

clustering and principal components analysis in order to suggest
groupings of commands in documentation or in menus [5].
Unlike our work, however, they did not use the analysis to
construct composite commands or controls1.

Lampe et al [6] analyze the behavior of lead users at Slashdot
but did not apply that analysis to generating reduced controls.
Other researchers have described interface design techniques
that draw on analysis of usage data. Analysis of log data has
been used to identify which commands should be mapped to
keyboard shortcuts in a text editor [7]. Automated analysis of
usage logs from user interface tests has also been used to
identify usability problems [8]. Usage traces have also been used
to optimize the rendering of controls as interface widgets and to
lay out those widgets on different devices [9]; their techniques,
however, do not generate new composite controls that
simultaneously change multiple underlying controls.

2. Hypothetical Example: Audio Equalizer
Consider a hypothetical task of creating a reduced set of controls
for the ten sliders in the audio equalizer found in iTunes, as
shown in Figure 1. There is a separate main volume control (not
shown). Each of the sliders controls the volume adjustment or
offset for an exclusive frequency range. For example, raising the
sliders on the left side would boost the bass output while the
sliders on the right side would boost the treble output. The
iTunes equalizer interface includes presets, one type of
simplified control we discuss in this paper. In other audio
interfaces, instead of sliders in each frequency range, a variety
of reduced controls are sometimes used for equalizer settings,
such as bass and treble knobs, a bass boost button, or a
“loudness” button that boosts both the lowest and highest
frequencies.

3. Case Study: Slashdot Filters
We used empirical data to apply several Interface Controls
Reduction techniques to a complex controller for the display of
comment threads at the news site Slashdot. Slashdot is an active
technology news site. It has a “front page” that shows the most
recent stories. When a user clicks on a story, he or she visits a
comments page with a threaded discussion. The site gets more
than a million page views each day, and the median number of
comments per story is about 250[10].

1 The analogy, though whimsical, would be if they had

generated a composite unix command that performed two rm
commands, an ls, and ½ of a cat command.

A subset of readers is eligible to assign tags such as “funny”,
“interesting”, “flame”, and “overrated”. Comments posted by
anonymous users start at score 0 while comments posted by
logged in users start at score 1 or 2, depending on the author’s
“karma” in the system. The tags assigned by other readers can
move a comment’s score up or down, within a range of -1 to 5.
The scores are used to sort or filter comments. Figure 2 shows a
filtered view of a Slashdot discussion.

3.1 The Initial, Full Controls Interface
We developed a new interface that gives users a lot of control
over how comments are displayed, controlling various
parameters of a focus+context display [11, 12]. Registered
participants in our study automatically interacted with our
interface rather than the default interface each time they visited
the site Slashdot.org.

The control panel shown in Figure 3 could be opened at any
time while reading comments. The “general full” threshold was
specified with the top-left set of radio buttons. Comments with
scores at or above the full-text threshold are displayed in full.
The second set of radio buttons specifies the “general one-liner”
threshold. Comments with scores between the one-line and full-
text thresholds are displayed in abbreviated form.
The remaining eighteen sets of radio buttons are controls that
override the general thresholds. We refer to these collectively as
the “extra context” thresholds because they can cause additional
comments to be displayed in order to provide context for a
reader. The controls all came in pairs; each pair sets a full-text
and a 1-line threshold.

The controls in area B are for top-level comments, those that
start new threads rather than replying to other comments. In the
settings shown, top-level comments need only a score of 4 to be
shown in full, while other comments need a score of 5.

In area C, a user could set lower threshold for replies to high
scorers or for their parents (the comments the high scorers reply
to.) A comment was considered high-scoring if its score was

Figure 2. Filtered Slashdot discussion.

Figure 1. iTunes equalizer with Piano preset applied.

above the general full-text threshold. In area D, a user could also
set lower thresholds for display of comments related to a
comment that was clicked on.

The motivation for giving users these extra context controls, and
analysis of their preferred settings, are not the focus of this
paper. Indeed, our conclusion after experimentation was that the
additional context controls do not provide sufficient benefit to
the browsing process for enough users to be worth including in
the production Slashdot interface, even in simplified form. It
still provides an illustrative case study, however, of how usage
data from early adopters can inform the generation of simplified
controls.

Between June 15 and July 13, 2006, 4300 registered users of
Slashdot were invited to participate in the experiment. The
invitation appeared as a link on the website. Users were
recruited in several waves, with slightly different selection
criteria. The first group of 500 invitees were users who had
posted the most comments on Slashdot recently. Later waves
were selected based on having recently logged in, read, or
posted comments.

Of these 4300 invited users, 627 completed the informed
consent process and the tutorial. Due to bugs in our logging
software, the logs for 164 of those users were corrupted, leaving
a total of 463 users for whom we have valid data about the
settings they chose. Of these, 267 users changed at least one
setting.

One participant offered early feedback: “A basic configuration
would be nice, with less options that would give simplified basic
configurations but still allow an advanced interface that would
allow the tweaking available now.” It was not obvious, however,
what the simplified options should be.

4. Three Recommender Approaches
It is clear that there is an opportunity to learn from the choices
of lead users who configure a complete set of controls to suit
their needs and preferences. It is not so clear what the concrete
mechanisms should be to allow the remaining users to benefit
from the explorations of the lead users. We present three
approaches.

4.1 Sharing User-created Presets
A preset controls, with a single click, the levels of several
individual controls. For example, the iTunes software comes
pre-loaded with a number of presets, with names such as “Bass
Booster,” “Jazz”, and “Small Speakers.” The “Piano” preset is
shown in Figure 1. A user can manually adjust any or all of the
sliders and then save that configuration as a preset, giving it a
name that is meaningful to the user.

4.1.1 Slashdot case study
We implemented a similar feature for the Slashdot filter settings.
A user could set thresholds and then save the current settings as
a named preset.
One important design decision was whether every preset should
specify all 20 thresholds or whether partial presets could specify
values for just some of the thresholds. When a user clicked on a
partial preset, the specified thresholds would be changed, but
remaining thresholds would stay at their levels before the user
applied the preset. While such partial presets would add useful
functionality, we were concerned about the complexity of the
interface for authoring presets—users would need to understand
the concept and then indicate which thresholds to include in the
preset. In the end, we opted for the simpler but less expressive
option of all presets specifying all 20 thresholds.
The presets feature was introduced more than a year after the
initial release and ten months after the release of the simplified
“Extra Context” controls described in Section 4.3. 91 users were
still using the experimental interface. Between July 13 and Sept.
16, 2007, only nine of them created a preset and only four
followed our intended usage pattern, creating multiple presets
that they used multiple times. By contrast, during the same
period, thirty-six users changed the simplified context controls
and ten changed context controls using the full control panel.
Thus, we conclude that the named presets were not a very
valuable feature for this application.
None of the users chose to export their presets and post them
publicly. In most cases, it seems that the presets would not have
been useful to other users, even if shared, because the names
given to them were not easily interpretable. A few were person
specific (e.g., “mine”, “default”, “Casual”, and a person’s
name). Others were descriptive but conveyed only a general
sense of the configuration (e.g., “Minimal”, “in-depth”,
“Uncut”). Only two were easily interpretable, “Threshold 3”
and “Threshold 5”.

4.1.2 Discussion
There are several advantages of sharing named presets. First it is
simple. It is relatively easy to offer the option of saving the
current configuration as a preset and to provide an export/import
capability to allow sharing. Second, it enables an active sharing
process, analogous to the notion of “Active Collaborative
Filtering” where users identify specific others to whom them
want to recommend an item[13]. Third, any preset that is shared

Figure 3. Initial full controls interface for Slashdot
comment filtering.

A

B

C D

is truly a preferred setting for at least one user, in contrast to the
clustering approach of the next section where the shared preset
is an aggregation of many preferred settings and is “close” to all
of them but may not actually be preferred by anyone.

There are two main challenges in sharing named presets. The
first is user motivation. Unless an individual user wants to
switch between different presets, there may be no reason for the
user to create and name their configurations. And even if they
create presets, they may not have any reason to actively share
them with others. The second challenge is the need for recipients
to understand what the presets do. The names that preset
producers choose may not always convey meaning to the
recipients.

Both these drawbacks were apparent in the Slashdot case study.
Few users who had already become comfortable with the
controls over a long period of time felt the need to create
presets, and none were motivated to post their presets for others
to examine. And the presets they created did not have names that
would have been easily understood had they been shared.
One application where sharing of named presets might be more
appropriate is configuring video compression settings.
Depending on source material, output size, and platform the user
might be asked to choose from various video and audio codecs,
resolutions, video and audio bitrates, frame rates, and other
processing filters designed to scale down source video for
specific applications. A single user might want to prepare video
for multiple uses, and thus would be motivated to name their
presets. Moreover, many of the names they might choose would
describe these situations in a way that would be meaningful to
others. For example, for the open source video encoder
HandBrake, the community maintains a wiki with presets that
have been developed to help users with the complicated
controls. Mostly, these are named for the playback devices that
they are optimized for [14].

4.2 Point Clustering to Automatically
Generate Presets
A second approach, point clustering, aggregates the choices
made by a set of lead users to automatically infer a small set of
presets to share with other users. It begins with a collection of
interface configurations that were helpful to lead users. If a lead
user has saved a preset, it is natural to include that preset in the
collection. However, even when users have not explicitly saved
presets, it is reasonable to include any configuration of all the
interface elements that a user has used repeatedly. The intuition
behind clustering is to divide the collection of “good
configurations” into clusters, with each cluster containing
similar configurations. Each cluster will then generate one
preset.

In the iTunes equalizer, it is natural to express each
configuration as a vector of 10 values, each expressing the level
of one of the 10 sliders. The distance between two
configurations can then be computed as the L1 or city-block
metric, which is the sum of the absolute differences in levels on
each of the sliders. Alternatively, L2 or Euclidean distance can
be computed as the square root of the sum of the squared
differences in levels on each of the sliders.

Given a metric that defines how far apart any pair of
configurations are, an algorithm can automatically divide the
collection of good configurations into clusters. For each cluster,

a centroid or central configuration can be chosen—the centroid
is the point that minimizes the sum of distances from all
configurations in the cluster. Each centroid can then be
provided as a preset to other users. If most of the good
configurations are close to one of the centroids, then the presets
generated in this way would have provided a reasonably good
match for the preferences of most of the lead users.

Of course, if the algorithm is permitted to generate more
clusters, and thus more centroids, more of the good
configurations will be closer to one of the generated presets. The
tradeoff is that the “reduced controls” interface gets harder to
understand and use the more presets are offered.

In our example, if iTunes were to automatically collect users’
presets and the unnamed configurations that they use frequently
it might be possible to cluster them to infer a more useful set of
presets to deliver pre-loaded with the software.

4.2.1 Slashdot case study
We applied the clustering approach to the filter thresholds
selected by users of the Slashdot control panel in Figure 3. For
simplicity, we selected each user’s most recent threshold
settings as the good configurations. Only users who had changed
at least one of the controls were included, since we did not want
to infer that a user liked his or her latest setting unless he or she
had tried other possibilities.
Before applying clustering, we had to make several decisions
particular to this application. First, because of the history of the
Slashdot interface, we decided that the simplified interface that
we created should include general full-text and one-line
controls, plus one or more presets for the remaining 18 context
thresholds. This is in contrast to our user-created presets, which
controlled the general thresholds as well as the context
thresholds.

An inspection of the users’ final configurations indicated that
many of the context thresholds were set 1 or 2 lower than the
corresponding general thresholds. Accordingly, we decided to
make the automatically derived simplified controls specify
offsets from the general thresholds rather than absolute
thresholds on their own. That way, the user could set the context
controls once, as offsets, and have the actual thresholds adjust
automatically when the user changed the general thresholds.

Thus, we re-expressed each user’s final settings for the 18 extra
context settings in terms of offsets. To make a consistent scale,
offsets were computed as a percentage of the potential offset.
For example, if the general threshold was 4, a context control set
at 4 or above has a 0% offset, a context control set at -1 has
100% offset and a context control set at 2 has an offset of 40%
since it is 40% of the way from 4 to -1. Full-text thresholds were
expressed as percent offsets from the general full-text threshold.
One-line thresholds were expressed as percent offsets from the
minimum of the general and one-line thresholds.

Configurations where either the general full-text or 1-line
threshold was set to -1 (the lowest possible value) were excluded
because in these configurations it was not possible for the
context controls to have lower values than the corresponding
general thresholds. 224 users’ final configurations met these
criteria. This produced a users by controls matrix with 224 rows
and 18 columns, with cells indicating the percentage offset for
the particular user on the particular controls.

Beginning with the matrix of percentage-offsets, we executed a
k-means clustering algorithm using the L2 or Euclidean distance
metric. Somewhat arbitrarily, we decided to produce five
clusters, with the intention of creating one button or menu item
for each cluster’s centroid in a simplified interface.

The largest cluster included 176 of the original 224
configurations, those that involved no extra context or only a
little. The largest offset on any of the thresholds for this cluster
centroid was 9%. Table 1 shows the percentage offsets for five
clusters, labeled “none” and C1-C4, for each of the context
controls. Note that there is no single ordering of the clusters in
terms of how much “extra context” they include. C1 has a lower
offset (11%) than C2 (21%) for the full-text threshold for
parents of high scorers (i.e., fewer extra comments would
display as full-text rather than 1-line); but it has a higher offset
for the 1-line threshold (i.e., more extra comments would
display as 1-line rather than being hidden completely.) Although
C2 gives larger offsets for thresholds in area D of the control
panel in figure 2 than to other areas, and C4 larger offsets for
controls in areas B and C, we were not able to give meaningful
names to clusters other than the first one, for which “no extra
context” is a reasonable approximation.

4.2.2 Discussion
The main advantage of point clustering, relative to preset
sharing, is its ability to aggregate the preferences of many users,
including preferences that are apparent in the configurations
users employ but do not name as personal presets. The main
advantage relative to the PCA technique, which will be
discussed next, is that the cluster centroids are not constrained to

be ordered monotonically on any dimension—it is possible to
generate a cluster centroid like the Piano equalizer configuration
in Figure 1 that is high on some dimensions and another cluster
that is high on a subset of those but low on a different subset.
There are two challenges in applying point clustering. The first
is to define a metric on configurations such that a user who is
satisfied with one configuration will also be pretty satisfied with
“nearby” configurations. This may not always be possible. The
second is a stronger version of the challenge with sharing named
presets—it is difficult to come up with names for the cluster
centroids from which shared presets are generated. The latter
challenge was most apparent in the Slashdot case study, where
we were unable to find meaningful names for the cluster
centroids.
The equalizer application seems like one where point clustering
might be most appropriate, because the two challenges are less
problematic for this application. Configurations with nearly but
not quite identical equalizer settings will sound similar to the
human ear. And it may not be necessary to name the presets at
all. Even in its current incarnation, the names for many of the
presets are not that informative, but they may not need to be. A
user can try each of the presets while listening to a song and
decide quickly what sounds best. By contrast, it takes
considerably more effort to evaluate whether a video
compression preset is appropriate or a Slashdot thresholds
preset, and so the information conveyed in the names is far more
important.

Table 1: Final Percentage offsets for Point Clusters and PCA Settings

Point Clusters PCA settings for

“extra context”

Dimension None C1 C2 C3 C4 Little Some Lot Max

Top Level F 3 7 10 25 33 9 15 18 24

Top Level 1L 4 16 8 14 67 10 16 19 24

High Scorer Child F 4 12 6 16 89 12 20 25 33

High Scorer Child 1L 2 29 11 3 83 14 27 35 49

High Scorer Parent F 5 11 21 9 100 17 32 41 55

High Scorer Parent 1L 9 42 26 2 100 24 43 55 74

Clicked Children F 1 20 69 39 0 25 56 75 100

Clicked Children 1L 0 52 100 31 0 35 80 100 100

Clicked Descendants F 0 10 50 18 0 17 39 53 75

Clicked Descendants 1L 0 35 92 13 0 27 63 85 100

Clicked Parent F 0 29 58 20 0 21 49 66 93

Clicked Parent 1L 1 67 100 13 0 34 78 100 100

Clicked Ancestors F 0 7 49 13 0 14 32 44 63

Clicked Ancestors 1L 0 25 100 3 0 21 52 70 100

Clicked Same Author F 0 23 38 22 0 20 45 60 85

Clicked Same Author 1L 0 43 83 13 0 29 68 91 100

Clicked Sibling F 0 4 50 8 0 11 27 37 53

Clicked Sibling 1L 0 20 92 3 0 20 48 65 92

4.3 Principal Component Analysis
A third approach, PCA [15], also infers a set of reduced controls
from the collection of “good configurations” of lead users.
Instead of identifying points in the configuration space (the
centroids of clusters) that cover most of the good configurations,
it finds a few vectors that can capture most of the variability in
that collection. In the case of the iTunes equalizer, it would
generate one or a few sliders, not presets as clustering does.

The output of PCA is a set of composite components that are
combinations of the original dimensions that corresponded to the
base interface controls. If, for example, in the audio equalizer
setting, whenever users set the left-most slider higher, they also
tended to set the next two sliders higher as well, one composite
component might include a positive weight on those three
dimensions, and little or no weight on the others. This composite
component would then be turned into an interface element such
as a slider, whose values would indicate how much of the
composite dimension to include. Thus, raising the slider for the
composite “bass” dimension described above would
simultaneously boost the volume for the three lowest frequency
ranges. The amount that each was boosted could vary,
depending on the weight that the composite component gives to
each of the original dimensions.
Each original configuration can be projected onto the nearest
point that can be expressed as a linear combination of the new
composite dimensions. It may not be possible, however, to
exactly express all of the original configurations using just the
reduced set of composite dimensions. For example, it will be
impossible to exactly match the Piano configuration in Figure 1
using a “bass” control that adjusts all three of the lowest
frequency bands: the two lowest bands have positive values in
the Piano configuration but the third does not.

Consider the distance between an original configuration and the
closest point that can be generated using the reduced controls as
an error measure for the reduced controls. For any fixed number
of reduced controls to be generated, PCA will automatically
generate a set of composite dimensions that minimizes the sum
of those errors. Including more components from the PCA, and
thus more controls in the reduced interface, will reduce the total
sum of errors, meaning that the controls can be used to come
closer to expressing more of the good configurations. On the
other hand, more controls imply more complexity in the user
interface. At the extreme, if the number of components selected
from the PCA equals the number of original interface controls,
the reduced controls will be fully expressive but not any simpler
than the original ones.

As with clustering, it may be difficult to name and describe the
composite controls resulting from PCA in a way that users can
understand. To the greatest extent possible, each original
interface dimension will load on just one Varimax rotated
principal component. When things work out well, each reduced
interface element may control a distinct subset of the original
interface elements, and there may be a natural name for that
collection. For example, with the equalizer controls, the
component that affects the three lowest frequency ranges might
be labeled as “bass”. There is no guarantee, however, that the
principal components will always admit such simple names.

While the reduced controls may be difficult to label, the values
on each control are ordered. Thus, if the control has an
intuitively understandable label, it will be easy for a user to

understand that different settings on that control indicate more
or less of the thing being controlled.

Sometimes it is desirable to have a few discrete choices for each
reduced control, rather than continuous controls such as sliders.
For example, it may be desirable to have a “loudness” button
that is either on or off, providing a discrete boost to the lowest
and highest frequencies, rather than a continuous “loudness”
slider. Using clustering, it is possible to automatically determine
an optimal set of discrete choices on each principal component.
Each good configuration is projected onto its nearest point that
can be expressed in terms of the reduced dimensions. Thus, each
good configuration generates a preferred level for each reduced
control. The set of preferred levels for a reduced control can
then be clustered using the technique of the previous section to
generate the best set of discrete options for that control.

4.3.1 Slashdot case study
We applied PCA to the same matrix X of offsets from users’
general Slashdot thresholds that we used in the clustering
analysis. PCA produced a set of easily interpretable composite
dimensions. The largest eigenvalues of the correlation matrix
XTX were 7.38 and 2.55, with three more values between 1 and
2, and thirteen more below 1.

With two components retained, after varimax rotation the two
components were naturally interpreted as “extra context before
clicks” and “extra context after clicks”. Thus, we could have
provided two extra context controls, one that simultaneously
adjusts all the top-level and high-scorer controls from areas B
and C of the original control panel in Figure 3, and one that
adjusts the clicked-on comments controls (area D). With three
components retained, the after-click control would have been
further divided into two controls, one that affects the full-text
thresholds in area D and one that affects the 1-click thresholds in
area D.

Even two or three controls for extra context, however, seemed
like too much complexity for the reduced interface. We opted to
include a single control, based on the single eigenvector that
captured the most variability in user preferences. It captured
41% of the overall variance in the actual settings users selected.
The single vector loads positively on all the individual controls,
though somewhat more on some controls than others. In order to
create discrete options rather than a continuous control, to match
the style of the then-standard Slashdot interface, we employed
the technique described above of projecting each row of X onto
the single eigenvector, then clustering. We labeled the overall
control as “Extra Context” and the five discrete options as
“None”, “A little”, “some”, “a lot”, and “maximum”, as shown
in Figure 4.

Figure 4. Reduced “Extra context” control

The right side of Table 1 shows the meaning of each of the
labeled options. For example, if the user selected “a lot” of extra
context, the 1-liner offset for children of clicked-on messages
would be 100% but the 1-liner offset for children of high scorers
would be only 35%. Thus, if the 1-line general threshold was 2,
the threshold for children of clicked-on messages would be -1
and the threshold for children of high scorers would be 1.
A version of the interface with the simplified “extra context”
control was released on August 29, 2006. Most people, who had
already configured the advanced settings, did not try the
simplified settings during a two week data collection period
after the interface was released. Of the 39 users who did try the
simplified settings, however, only three had switched back to
advanced controls at the end of the data collection and only four
had set the “extra context” to none, suggesting that the single
control was sufficiently expressive for most users who tried it.

Survey respondents generally praised the simplified controls.
One wrote: “I really like the changes in late August, they made
it much easier. Especially the extra controls thing, it's so much
simpler.” Another wrote: “I really enjoy both the advanced and
simplified interfaced, great improvement from the first test
version!” The interface was not tested with new users, however,
so we cannot be sure whether users who had never seen the
advanced control panel would have understood the single “extra
context” control or liked the alternative settings that it provided.

4.3.2 Discussion
Like point clustering, PCA has the advantage of automatically
aggregating the preferences of many users. Relative to point
clustering, the main advantage is that the simplified controls are
easily interpreted as providing more or less of each reduced
dimension.

The main challenge is that it may not be obvious what to name
the reduced controls, to convey to users what they are getting
more or less of. In addition, like point clustering, dimension
reduction depends on the existence of a distance metric among
configurations such that nearby configurations are of similar
utility to users.

The use of PCA here is analogous its use in personalized
recommendations, but with an important twist. For example, the
factor analysis approach to recommending items [2] begins with
a matrix whose elements are user’s ratings of items. That is
analogous to our matrix X which gives user’s settings (levels)
for each of the items (the original controls). Then, the factor
analysis approach derives a set of underlying factors (analogous
to our components in PCA). Each factor has weights for each of
the items, and each person’s vector of ratings for the items is
approximated by loadings or preferences for each of the factors.

From here, however, the processes diverge. In conventional
recommenders, the user never sees any representation of the
principal components or factors. It is presumed that users can
easily rate some individual items; the purpose of identifying
factors or components is to extend a user’s expressed
preferences to additional items beyond those that the user has
rated. If we were to apply the standard recommender system
approach directly, we would have users pick their settings on a
few of the original controls and infer their preferred settings for
the other controls. In our interface controls application, by
contrast, each principal component becomes a reduced control
that is visible to the user; the user manually inputs his or her
preferences using the reduced controls.

Having the user directly interact with the controls derived from
the principal components, however, creates a constraint that they
must be understandable. PCA worked reasonably well for the
Slashdot case because the principal components produced
composite controls that mapped to meaningful sets of the
original controls. In applications where that is not the case, PCA
may not be an effective technique.
Another application where PCA might work well is browser
security settings. Modern web browsers include a large number
of configurable options about what the browser is allowed to do,
ranging from allowing the innocuous inconvenience of popups
to the extreme vulnerabilities of running unsigned plugins.
Internet Explorer 7, for example, has over 40 configurable
parameters, some with multiple possible settings. Many end-
users do not understand what all of the underlying parameters

Table 2. Summary of approaches for Interface Controls Reduction.

Name Preset sharing Point clustering PCA

Description Users save and name
complete configurations;
export for others to use

Divide users’ good configurations
into clusters; centroid of each cluster
becomes one configuration to share

Apply principal component
analysis; each retained
component becomes one reduced
control

Advantages · Share with specific people
· Exact favorites

· Aggregate configurations
· Finds favorites that may not be
ordered

· Aggregate configurations
· Each control is interpretable as
less or more

Challenges · Motivation to name and
share
· Personal names may not
be publicly understood

· Hard to name the cluster centroids
· Requires distance metric matched
to user preferences

· Hard to name the dimensions
· Requires distance metric
matched to user preferences

Suitable
Application

· Video compression
settings

· Audio equalizer · Slashdot context filter settings
 Browser security settings

control. Expert lead users might create various configurations
but to convey their meanings to end-users it is probably
necessary to array them on a single dimension of more or less
secure. Indeed, Internet Explorer provides a single reduced
control with values Medium, Medium-High, and High; as far as
we know, however, the meaning of those settings was not
determined through empirical analysis of the settings of expert
lead users.

5. Conclusion
Our examples of Interface Controls Reduction show the
potential for interface design to move towards a practice based
on user-generated data. The three methods we present, user-
contributed presets, point-clustering, and PCA, allow for a
population of early users to indicate the useful space inside of a
complicated interface design space and map it out for
subsequent users. Together with other techniques such as
automated widget selection and layout [9], our techniques
contribute to an emerging toolkit for usage-driven interface
design.
Our case study with Slashdot indicates that some advanced users
can come to grips with a complicated interface, and generate
useful data indicating how to combine large numbers of
controls. In this case, we believe PCA was the most useful
technique, but in other cases the methods of point clustering and
preset sharing would be more appropriate. Table 2 summarizes
our assessment of the advantages and challenges of each
approach.

Some challenges are evident for ICR to become used widely as a
tool for designers. Data acquisition of user behavior is not
standardized across applications and toolkits, and must be
integrated into an application with substantial development time
and effort. Moreover, we had to make a number of application-
specific choices in our Slashdot study. As more experience
accrues with ICR, analysis and design patterns may emerge that
provide more guidance on these application-specific choices.
The adoption of ICR could be accelerated by integrating data
acquisition into a UI framework, and data analysis into a
complementary GUI creation tool. Application interface design
as an iterative methodology could then routinely include
quantitative user-generated data as a source of feedback.

Fortunately, modern web-based applications using server-side
data logging provide an ideal platform for data acquisition from
a user population, and these applications can be updated
frequently and instantaneously without user interaction. As
browser-based GUI applications become more popular, the data
needed for ICR could easily become more readily available.
This is a promising trend for the adoption of recommender
systems for interface design.

6. ACKNOWLEDGMENTS
We thank Rob Malda, Chris Nandor, Tim Vroom, and Scott
Collins at Slashdot for courageously allowing us to integrate our
experimental interface into the live functioning of the site, and
providing technical support for our implementation efforts.

7. REFERENCES
[1] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T.

K. and Harshman, R. Indexing by latent semantic indexing.

Journal of the American Society for Information Science,
41, 6 1990), 391-407.

[2] Canny, J. Collaborative filtering with privacy via factor
analysis. In Proceedings of the ACM SIGIR Conference on
Research and Development in Information Retrieval
(Tampere, Finland, 2002). ACM, 238-245.

[3] Goldberg, K., Roeder, T., Gupta, D. and Perkins, C.
Eigentaste: A Constant Time Collaborative Filtering
Algorithm. Information Retrieval, 4, 2 (July 2001).

[4] Sarwar, B. M., Karypis, G., Konstan, J. A. and Riedl, J.
Application of Dimensionality Reduction in Recommender
System- A Case Study. In Proceedings of the ACM
WebKDD 2000 Web Mining for E-Commerce Workshop
(2000).

[5] Hanson, S. J., Kraut, R. E. and Farber, J. M. Interface
design and multivariate analysis of UNIX command use.
ACM Transactions on Information Systems, 2, 1 1984), 42-
57.

[6] Lampe, C., Johnston, E. and Resnick, P. Follow the reader:
filtering comments on Slashdot. In Proceedings of the CHI
'07 (San Jose, California, USA, 2007). ACM Press, 1253-
1262.

[7] Good, M. The use of logging data in the design of new text
editor. In Proceedings of the CHI 85 (San Francisco, CA,
US, 1985), 93-97.

[8] Siochi, A. C. and Hix, D. A study of computer-supported
user interface evaluation using maximal repeating pattern
analysis. In Proceedings of the CHI 91 (New Orlean, LA,
1991). ACM Press, 301-305.

[9] Gajos, K. and Weld, D. S. SUPPLE: automatically
generating user interfaces. In Proceedings of the IUI '04
conference on Intelligent user interfaces (2004). ACM, 93-
100.

[10] Lampe, C. and Resnick, P. Slash(dot) and Burn: Distributed
Moderation in a Large Online Conversation Space. In
Proceedings of the CHI 04 (2004), 542-550.

[11] Furnas, G. W. Generalized Fisheye Views. In Proceedings
of the CHI '86 (Boston, 1986), 16-23.

[12] Furnas, G. W. A Fisheye Follow-up: Further Reflections on
focus + context. In Proceedings of the CHI 06 (Montreal,
Quebec, Canada, 2006). ACM Press, 999-1008.

[13] Maltz, D. and Ehrlich, K. Pointing the way: active
collaborative filtering. In Proceedings of the Proceedings
of CHI '95 (Denver, Colorado, United States, 1995). ACM
Press/Addison-Wesley Publishing Co.

[14] HandBrake HandBrake's Built-In Presets, Wiki Page. City,
2008.

[15] StataCorp Multivariate Statistics Reference Manual. Stata
Press, College Station, Texas, 2007.

