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ABSTRACT 
Interface Controls Reduction is the design task of generating 
simplified interface controls for setting a larger, more complex 
set of controls. We explore three different empirical approaches 
to the task: preset sharing, point clustering, and principal 
component analysis. All three draw on the experience of lead 
users to recommend simplified controls for others. A case study 
where they were applied as part of an iterative development 
cycle with hundreds of users reveals the advantages and 
challenges of each approach. 

Categories and Subject Descriptors 
H5.m. Information interfaces and presentation (e.g., HCI): 
Miscellaneous.  

General Terms 
Design, Experimentation 

Keywords 
ICR, Slashdot, clustering, principal component analysis, preset 

1. INTRODUCTION 
“Keep it Simple Stupid” is an often-repeated maxim for 
interface design, but one that’s hard to follow. The underlying 
functions of the software may involve many user-settable 
parameters, implying a need for many controls in the UI. To 
avoid complex interfaces, one approach is to hide less-important 
controls in nested submenus, “advanced” dialog windows, 
tabbed menus, and the like. Another approach, which we calls 
“Interface Controls Reduction (ICR)”, is to generate composite 
controls for setting a larger, more complex set of controls. In 
practice today, designers rely on intuition to choose which 
controls to highlight or hide and what reduced composite 
controls to make. 
More empirical approaches are now becoming practical. Often 
software is deployed in stages where different populations of 
users are allowed access to products still in development.  
Actions can be recorded and analyzed to show patterns of 
behavior for these lead users. Whereas users may be willing to 

“pay” for beta software by tolerating and reporting bugs and 
obvious flaws, it is also practical to assume they would be 
willing to share their behavior in the application in order to build 
a better product. Moreover, the beta users may also be the most 
motivated to explore product features. Thus, rather than 
guessing which controls or combinations of them should be 
elevated to prominence in the interface, these lead users can be 
given a more complex interface with all the individual controls. 
Their action can then guide the development of a simpler 
interface for other users. Clearly, the lead users are unlike other 
users in at least one respect, their willingness to learn and 
experiment with complex controls. Despite that difference, their 
preferences among interface configurations, after exploration, 
may be reasonably representative of the preferences other users 
would have, if they, too, incurred the cost of exploration. 

We explore three different empirical approaches to Interface 
Controls Reduction: preset sharing, clustering, and principal 
components analysis (PCA). They are all “recommender 
approaches” in that they rely on the explorations and choices of 
lead users, who interact with the full set of controls, to 
recommend combinations of settings to other users, much as 
recommender systems recommend items to users based on the 
prior experiences of other users with those items. Two of the 
approaches generate “point” outputs, complete configurations 
that users can select. The third, PCA, generates “vector” outputs 
which can be turned into controls such as sliders and knobs that 
users can interact with. 
We first present a hypothetical example, audio equalizer 
settings, and a real case study, contextual filter settings for the 
online discussion system at SlashDot. Then we explain each of 
the three empirical approaches and illustrate with respect to the 
hypothetical example and the case study. Each section includes a 
discussion of the challenges in applying that approach. Since we 
do not think it will always be possible to overcome these 
challenges, each section also discusses the types of applications 
the technique is suited to, those where the challenges can be 
overcome or it is not essential to do so. 

1.1 Related work 
Presets are a widely deployed interface element. The 
import/export feature that enables their sharing is less common, 
however.  

The applications of clustering and PCA described here are 
novel, but have some interesting antecedents. PCA and the 
related techniques of Singular Value Decomposition and Factor 
Analysis have been used in information retrieval [1], and in 
recommender algorithms [2-4]. Perhaps the closest in spirit to 
our own work is an analysis of UNIX command-line usage using 
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clustering and principal components analysis in order to suggest 
groupings of commands in documentation or in menus [5]. 
Unlike our work, however, they did not use the analysis to 
construct composite commands or controls1. 

Lampe et al [6] analyze the behavior of lead users at Slashdot 
but did not apply that analysis to generating reduced controls. 
Other researchers have described interface design techniques 
that draw on analysis of usage data. Analysis of log data has 
been used to identify which commands should be mapped to 
keyboard shortcuts in a text editor [7]. Automated analysis of 
usage logs from user interface tests has also been used to 
identify usability problems [8]. Usage traces have also been used 
to optimize the rendering of controls as interface widgets and to 
lay out those widgets on different devices [9]; their techniques, 
however, do not generate new composite controls that 
simultaneously change multiple underlying controls. 

2. Hypothetical Example: Audio Equalizer  
Consider a hypothetical task of creating a reduced set of controls 
for the ten sliders in the audio equalizer found in iTunes, as 
shown in Figure 1. There is a separate main volume control (not 
shown). Each of the sliders controls the volume adjustment or 
offset for an exclusive frequency range. For example, raising the 
sliders on the left side would boost the bass output while the 
sliders on the right side would boost the treble output. The 
iTunes equalizer interface includes presets, one type of 
simplified control we discuss in this paper.  In other audio 
interfaces, instead of sliders in each frequency range, a variety 
of reduced controls are sometimes used for equalizer settings, 
such as bass and treble knobs, a bass boost button, or a 
“loudness” button that boosts both the lowest and highest 
frequencies. 

3. Case Study: Slashdot Filters 
We used empirical data to apply several Interface Controls 
Reduction techniques to a complex controller for the display of 
comment threads at the news site Slashdot. Slashdot is an active 
technology news site.  It has a “front page” that shows the most 
recent stories. When a user clicks on a story, he or she visits a 
comments page with a threaded discussion. The site gets more 
than a million page views each day, and the median number of 
comments per story is about 250[10]. 

                                                                    
1 The analogy, though whimsical, would be if they had 

generated a composite unix command that performed two rm 
commands, an ls, and ½ of a cat command. 

A subset of readers is eligible to assign tags such as “funny”, 
“interesting”, “flame”, and “overrated”. Comments posted by 
anonymous users start at score 0 while comments posted by 
logged in users start at score 1 or 2, depending on the author’s 
“karma” in the system. The tags assigned by other readers can 
move a comment’s score up or down, within a range of -1 to 5. 
The scores are used to sort or filter comments. Figure 2 shows a 
filtered view of a Slashdot discussion. 

3.1 The Initial, Full Controls Interface 
We developed a new interface that gives users a lot of control 
over how comments are displayed, controlling various 
parameters of a focus+context display [11, 12]. Registered 
participants in our study automatically interacted with our 
interface rather than the default interface each time they visited 
the site Slashdot.org.  

The control panel shown in Figure 3 could be opened at any 
time while reading comments. The “general full” threshold was 
specified with the top-left set of radio buttons. Comments with 
scores at or above the full-text threshold are displayed in full. 
The second set of radio buttons specifies the “general one-liner” 
threshold.  Comments with scores between the one-line and full-
text thresholds are displayed in abbreviated form. 
The remaining eighteen sets of radio buttons are controls that 
override the general thresholds. We refer to these collectively as 
the “extra context” thresholds because they can cause additional 
comments to be displayed in order to provide context for a 
reader. The controls all came in pairs; each pair sets a full-text 
and a 1-line threshold.  

The controls in area B are for top-level comments, those that 
start new threads rather than replying to other comments. In the 
settings shown, top-level comments need only a score of 4 to be 
shown in full, while other comments need a score of 5. 

In area C, a user could set lower threshold for replies to high 
scorers or for their parents (the comments the high scorers reply 
to.) A comment was considered high-scoring if its score was 

Figure 2. Filtered Slashdot discussion. 

Figure 1. iTunes equalizer with Piano preset applied. 



 

above the general full-text threshold. In area D, a user could also 
set lower thresholds for display of comments related to a 
comment that was clicked on. 

The motivation for giving users these extra context controls, and 
analysis of their preferred settings, are not the focus of this 
paper. Indeed, our conclusion after experimentation was that the 
additional context controls do not provide sufficient benefit to 
the browsing process for enough users to be worth including in 
the production Slashdot interface, even in simplified form. It 
still provides an illustrative case study, however, of how usage 
data from early adopters can inform the generation of simplified 
controls. 

Between June 15 and July 13, 2006, 4300 registered users of 
Slashdot were invited to participate in the experiment.  The 
invitation appeared as a link on the website. Users were 
recruited in several waves, with slightly different selection 
criteria. The first group of 500 invitees were users who had 
posted the most comments on Slashdot recently. Later waves 
were selected based on having recently logged in, read, or 
posted comments. 

Of these 4300 invited users, 627 completed the informed 
consent process and the tutorial. Due to bugs in our logging 
software, the logs for 164 of those users were corrupted, leaving 
a total of 463 users for whom we have valid data about the 
settings they chose. Of these, 267 users changed at least one 
setting. 

One participant offered early feedback: “A basic configuration 
would be nice, with less options that would give simplified basic 
configurations but still allow an advanced interface that would 
allow the tweaking available now.” It was not obvious, however, 
what the simplified options should be. 

4. Three Recommender Approaches 
It is clear that there is an opportunity to learn from the choices 
of lead users who configure a complete set of controls to suit 
their needs and preferences. It is not so clear what the concrete 
mechanisms should be to allow the remaining users to benefit 
from the explorations of the lead users. We present three 
approaches. 

4.1 Sharing User-created Presets 
A preset controls, with a single click, the levels of several 
individual controls. For example, the iTunes software comes 
pre-loaded with a number of presets, with names such as “Bass 
Booster,” “Jazz”, and “Small Speakers.” The “Piano” preset is 
shown in Figure 1. A user can manually adjust any or all of the 
sliders and then save that configuration as a preset, giving it a 
name that is meaningful to the user. 

4.1.1 Slashdot case study 
We implemented a similar feature for the Slashdot filter settings. 
A user could set thresholds and then save the current settings as 
a named preset.  
One important design decision was whether every preset should 
specify all 20 thresholds or whether partial presets could specify 
values for just some of the thresholds. When a user clicked on a 
partial preset, the specified thresholds would be changed, but 
remaining thresholds would stay at their levels before the user 
applied the preset. While such partial presets would add useful 
functionality, we were concerned about the complexity of the 
interface for authoring presets—users would need to understand 
the concept and then indicate which thresholds to include in the 
preset. In the end, we opted for the simpler but less expressive 
option of all presets specifying all 20 thresholds. 
The presets feature was introduced more than a year after the 
initial release and ten months after the release of the simplified 
“Extra Context” controls described in Section 4.3. 91 users were 
still using the experimental interface. Between July 13 and Sept. 
16, 2007, only nine of them created a preset and only four 
followed our intended usage pattern, creating multiple presets 
that they used multiple times. By contrast, during the same 
period, thirty-six users changed the simplified context controls 
and ten changed context controls using the full control panel. 
Thus, we conclude that the named presets were not a very 
valuable feature for this application. 
None of the users chose to export their presets and post them 
publicly. In most cases, it seems that the presets would not have 
been useful to other users, even if shared, because the names 
given to them were not easily interpretable. A few were person 
specific (e.g., “mine”, “default”, “Casual”, and a person’s 
name). Others were descriptive but conveyed only a general 
sense of the configuration (e.g., “Minimal”, “in-depth”, 
“Uncut”).  Only two were easily interpretable, “Threshold 3” 
and “Threshold 5”. 

4.1.2 Discussion 
There are several advantages of sharing named presets. First it is 
simple. It is relatively easy to offer the option of saving the 
current configuration as a preset and to provide an export/import 
capability to allow sharing. Second, it enables an active sharing 
process, analogous to the notion of “Active Collaborative 
Filtering” where users identify specific others to whom them 
want to recommend an item[13]. Third, any preset that is shared 

Figure 3. Initial full controls interface for Slashdot 
comment filtering. 
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is truly a preferred setting for at least one user, in contrast to the 
clustering approach of the next section where the shared preset 
is an aggregation of many preferred settings and is “close” to all 
of them but may not actually be preferred by anyone. 

There are two main challenges in sharing named presets. The 
first is user motivation. Unless an individual user wants to 
switch between different presets, there may be no reason for the 
user to create and name their configurations. And even if they 
create presets, they may not have any reason to actively share 
them with others. The second challenge is the need for recipients 
to understand what the presets do. The names that preset 
producers choose may not always convey meaning to the 
recipients.  

Both these drawbacks were apparent in the Slashdot case study. 
Few users who had already become comfortable with the 
controls over a long period of time felt the need to create 
presets, and none were motivated to post their presets for others 
to examine. And the presets they created did not have names that 
would have been easily understood had they been shared. 
One application where sharing of named presets might be more 
appropriate is configuring video compression settings. 
Depending on source material, output size, and platform the user 
might be asked to choose from various video and audio codecs, 
resolutions, video and audio bitrates, frame rates, and other 
processing filters designed to scale down source video for 
specific applications. A single user might want to prepare video 
for multiple uses, and thus would be motivated to name their 
presets. Moreover, many of the names they might choose would 
describe these situations in a way that would be meaningful to 
others. For example, for the open source video encoder 
HandBrake, the community maintains a wiki with presets that 
have been developed to help users with the complicated 
controls. Mostly, these are named for the playback devices that 
they are optimized for [14]. 

4.2 Point Clustering to Automatically 
Generate Presets 
A second approach, point clustering, aggregates the choices 
made by a set of lead users to automatically infer a small set of 
presets to share with other users. It begins with a collection of 
interface configurations that were helpful to lead users. If a lead 
user has saved a preset, it is natural to include that preset in the 
collection. However, even when users have not explicitly saved 
presets, it is reasonable to include any configuration of all the 
interface elements that a user has used repeatedly. The intuition 
behind clustering is to divide the collection of “good 
configurations” into clusters, with each cluster containing 
similar configurations. Each cluster will then generate one 
preset. 

In the iTunes equalizer, it is natural to express each 
configuration as a vector of 10 values, each expressing the level 
of one of the 10 sliders. The distance between two 
configurations can then be computed as the L1 or city-block 
metric, which is the sum of the absolute differences in levels on 
each of the sliders. Alternatively, L2 or Euclidean distance can 
be computed as the square root of the sum of the squared 
differences in levels on each of the sliders. 

Given a metric that defines how far apart any pair of 
configurations are, an algorithm can automatically divide the 
collection of good configurations into clusters. For each cluster, 

a centroid or central configuration can be chosen—the centroid 
is the point that minimizes the sum of distances from all 
configurations in the cluster.  Each centroid can then be 
provided as a preset to other users. If most of the good 
configurations are close to one of the centroids, then the presets 
generated in this way would have provided a reasonably good 
match for the preferences of most of the lead users.  

Of course, if the algorithm is permitted to generate more 
clusters, and thus more centroids, more of the good 
configurations will be closer to one of the generated presets. The 
tradeoff is that the “reduced controls” interface gets harder to 
understand and use the more presets are offered.  

In our example, if iTunes were to automatically collect users’ 
presets and the unnamed configurations that they use frequently  
it might be possible to cluster them to infer a more useful set of 
presets to deliver pre-loaded with the software. 

4.2.1 Slashdot case study 
We applied the clustering approach to the filter thresholds 
selected by users of the Slashdot control panel in Figure 3. For 
simplicity, we selected each user’s most recent threshold 
settings as the good configurations. Only users who had changed 
at least one of the controls were included, since we did not want 
to infer that a user liked his or her latest setting unless he or she 
had tried other possibilities. 
Before applying clustering, we had to make several decisions 
particular to this application. First, because of the history of the 
Slashdot interface, we decided that the simplified interface that 
we created should include general full-text and one-line 
controls, plus one or more presets for the remaining 18 context 
thresholds. This is in contrast to our user-created presets, which 
controlled the general thresholds as well as the context 
thresholds.  

An inspection of the users’ final configurations indicated that 
many of the context thresholds were set 1 or 2 lower than the 
corresponding general thresholds. Accordingly, we decided to 
make the automatically derived simplified controls specify 
offsets from the general thresholds rather than absolute 
thresholds on their own. That way, the user could set the context 
controls once, as offsets, and have the actual thresholds adjust 
automatically when the user changed the general thresholds. 

Thus, we re-expressed each user’s final settings for the 18 extra 
context settings in terms of offsets. To make a consistent scale, 
offsets were computed as a percentage of the potential offset. 
For example, if the general threshold was 4, a context control set 
at 4 or above has a 0% offset, a context control set at -1 has 
100% offset and a context control set at 2 has an offset of 40% 
since it is 40% of the way from 4 to -1. Full-text thresholds were 
expressed as percent offsets from the general full-text threshold. 
One-line thresholds were expressed as percent offsets from the 
minimum of the general and one-line thresholds.  

Configurations where either the general full-text or 1-line 
threshold was set to -1 (the lowest possible value) were excluded 
because in these configurations it was not possible for the 
context controls to have lower values than the corresponding 
general thresholds. 224 users’ final configurations met these 
criteria. This produced a users by controls matrix with 224 rows 
and 18 columns, with cells indicating the percentage offset for 
the particular user on the particular controls. 



 

Beginning with the matrix of percentage-offsets, we executed a 
k-means clustering algorithm using the L2 or Euclidean distance 
metric. Somewhat arbitrarily, we decided to produce five 
clusters, with the intention of creating one button or menu item 
for each cluster’s centroid in a simplified interface. 

The largest cluster included 176 of the original 224 
configurations, those that involved no extra context or only a 
little. The largest offset on any of the thresholds for this cluster 
centroid was 9%. Table 1 shows the percentage offsets for five 
clusters, labeled “none” and C1-C4, for each of the context 
controls. Note that there is no single ordering of the clusters in 
terms of how much “extra context” they include. C1 has a lower 
offset (11%) than C2 (21%) for the full-text threshold for 
parents of high scorers (i.e., fewer extra comments would 
display as full-text rather than 1-line); but it has a higher offset 
for the 1-line threshold (i.e., more extra comments would 
display as 1-line rather than being hidden completely.) Although 
C2 gives larger offsets for thresholds in area D of the control 
panel in figure 2 than to other areas, and C4 larger offsets for 
controls in areas B and C, we were not able to give meaningful 
names to clusters other than the first one, for which “no extra 
context” is a reasonable approximation. 

4.2.2 Discussion 
The main advantage of point clustering, relative to preset 
sharing, is its ability to aggregate the preferences of many users, 
including preferences that are apparent in the configurations 
users employ but do not name as personal presets. The main 
advantage relative to the PCA technique, which will be 
discussed next, is that the cluster centroids are not constrained to 

be ordered monotonically on any dimension—it is possible to 
generate a cluster centroid like the Piano equalizer configuration 
in Figure 1 that is high on some dimensions and another cluster 
that is high on a subset of those but low on a different subset. 
There are two challenges in applying point clustering. The first 
is to define a metric on configurations such that a user who is 
satisfied with one configuration will also be pretty satisfied with 
“nearby” configurations. This may not always be possible. The 
second is a stronger version of the challenge with sharing named 
presets—it is difficult to come up with names for the cluster 
centroids from which shared presets are generated. The latter 
challenge was most apparent in the Slashdot case study, where 
we were unable to find meaningful names for the cluster 
centroids. 
The equalizer application seems like one where point clustering 
might be most appropriate, because the two challenges are less 
problematic for this application. Configurations with nearly but 
not quite identical equalizer settings will sound similar to the 
human ear. And it may not be necessary to name the presets at 
all. Even in its current incarnation, the names for many of the 
presets are not that informative, but they may not need to be. A 
user can try each of the presets while listening to a song and 
decide quickly what sounds best. By contrast, it takes 
considerably more effort to evaluate whether a video 
compression preset is appropriate or a Slashdot thresholds 
preset, and so the information conveyed in the names is far more 
important. 

Table 1: Final Percentage offsets for Point Clusters and PCA Settings 

 
Point Clusters  PCA settings for 

“extra context” 

Dimension None C1 C2 C3 C4  Little Some Lot Max 

Top Level F 3 7 10 25 33  9 15 18 24 

Top Level 1L 4 16 8 14 67  10 16 19 24 

High Scorer Child F 4 12 6 16 89  12 20 25 33 

High Scorer Child 1L 2 29 11 3 83  14 27 35 49 

High Scorer Parent F 5 11 21 9 100  17 32 41 55 

High Scorer Parent 1L 9 42 26 2 100  24 43 55 74 

Clicked Children F 1 20 69 39 0  25 56 75 100 

Clicked Children 1L 0 52 100 31 0  35 80 100 100 

Clicked Descendants F 0 10 50 18 0  17 39 53 75 

Clicked Descendants 1L 0 35 92 13 0  27 63 85 100 

Clicked Parent F 0 29 58 20 0  21 49 66 93 

Clicked Parent 1L 1 67 100 13 0  34 78 100 100 

Clicked Ancestors F 0 7 49 13 0  14 32 44 63 

Clicked Ancestors 1L 0 25 100 3 0  21 52 70 100 

Clicked Same Author F 0 23 38 22 0  20 45 60 85 

Clicked Same Author 1L 0 43 83 13 0  29 68 91 100 

Clicked Sibling F 0 4 50 8 0  11 27 37 53 

Clicked Sibling 1L 0 20 92 3 0  20 48 65 92 
 



 

4.3 Principal Component Analysis 
A third approach, PCA [15], also infers a set of reduced controls 
from the collection of “good configurations” of lead users. 
Instead of identifying points in the configuration space (the 
centroids of clusters) that cover most of the good configurations, 
it finds a few vectors that can capture most of the variability in 
that collection. In the case of the iTunes equalizer, it would 
generate one or a few sliders, not presets as clustering does. 

The output of PCA is a set of composite components that are 
combinations of the original dimensions that corresponded to the 
base interface controls.  If, for example, in the audio equalizer 
setting, whenever users set the left-most slider higher, they also 
tended to set the next two sliders higher as well, one composite 
component might include a positive weight on those three 
dimensions, and little or no weight on the others. This composite 
component would then be turned into an interface element such 
as a slider, whose values would indicate how much of the 
composite dimension to include. Thus, raising the slider for the 
composite “bass” dimension described above would 
simultaneously boost the volume for the three lowest frequency 
ranges. The amount that each was boosted could vary, 
depending on the weight that the composite component gives to 
each of the original dimensions. 
Each original configuration can be projected onto the nearest 
point that can be expressed as a linear combination of the new 
composite dimensions. It may not be possible, however, to 
exactly express all of the original configurations using just the 
reduced set of composite dimensions. For example, it will be 
impossible to exactly match the Piano configuration in Figure 1 
using a “bass” control that adjusts all three of the lowest 
frequency bands: the two lowest bands have positive values in 
the Piano configuration but the third does not. 

Consider the distance between an original configuration and the 
closest point that can be generated using the reduced controls as 
an error measure for the reduced controls. For any fixed number 
of reduced controls to be generated, PCA will automatically 
generate a set of composite dimensions that minimizes the sum 
of those errors. Including more components from the PCA, and 
thus more controls in the reduced interface, will reduce the total 
sum of errors, meaning that the controls can be used to come 
closer to expressing more of the good configurations. On the 
other hand, more controls imply more complexity in the user 
interface. At the extreme, if the number of components selected 
from the PCA equals the number of original interface controls, 
the reduced controls will be fully expressive but not any simpler 
than the original ones. 

As with clustering, it may be difficult to name and describe the 
composite controls resulting from PCA in a way that users can 
understand. To the greatest extent possible, each original 
interface dimension will load on just one Varimax rotated 
principal component. When things work out well, each reduced 
interface element may control a distinct subset of the original 
interface elements, and there may be a natural name for that 
collection. For example, with the equalizer controls, the 
component that affects the three lowest frequency ranges might 
be labeled as “bass”. There is no guarantee, however, that the 
principal components will always admit such simple names. 

While the reduced controls may be difficult to label, the values 
on each control are ordered. Thus, if the control has an 
intuitively understandable label, it will be easy for a user to 

understand that different settings on that control indicate more 
or less of the thing being controlled.  

Sometimes it is desirable to have a few discrete choices for each 
reduced control, rather than continuous controls such as sliders. 
For example, it may be desirable to have a “loudness” button 
that is either on or off, providing a discrete boost to the lowest 
and highest frequencies, rather than a continuous “loudness” 
slider. Using clustering, it is possible to automatically determine 
an optimal set of discrete choices on each principal component. 
Each good configuration is projected onto its nearest point that 
can be expressed in terms of the reduced dimensions. Thus, each 
good configuration generates a preferred level for each reduced 
control. The set of preferred levels for a reduced control can 
then be clustered using the technique of the previous section to 
generate the best set of discrete options for that control. 

4.3.1 Slashdot case study 
We applied PCA to the same matrix X of offsets from users’ 
general Slashdot thresholds that we used in the clustering 
analysis. PCA produced a set of easily interpretable composite 
dimensions. The largest eigenvalues of the correlation matrix 
XTX were 7.38 and 2.55, with three more values between 1 and 
2, and thirteen more below 1.  

With two components retained, after varimax rotation the two 
components were naturally interpreted as “extra context before 
clicks” and “extra context after clicks”. Thus, we could have 
provided two extra context controls, one that simultaneously 
adjusts all the top-level and high-scorer controls from areas B 
and C of the original control panel in Figure 3, and one that 
adjusts the clicked-on comments controls (area D). With three 
components retained, the after-click control would have been 
further divided into two controls, one that affects the full-text 
thresholds in area D and one that affects the 1-click thresholds in 
area D. 

Even two or three controls for extra context, however, seemed 
like too much complexity for the reduced interface. We opted to 
include a single control, based on the single eigenvector that 
captured the most variability in user preferences. It captured 
41% of the overall variance in the actual settings users selected. 
The single vector loads positively on all the individual controls, 
though somewhat more on some controls than others. In order to 
create discrete options rather than a continuous control, to match 
the style of the then-standard Slashdot interface, we employed 
the technique described above of projecting each row of X onto 
the single eigenvector, then clustering. We labeled the overall 
control as “Extra Context” and the five discrete options as 
“None”, “A little”, “some”, “a lot”, and “maximum”, as shown 
in Figure 4. 

Figure 4. Reduced “Extra context” control 



 

The right side of Table 1 shows the meaning of each of the 
labeled options. For example, if the user selected “a lot” of extra 
context, the 1-liner offset for children of clicked-on messages 
would be 100% but the 1-liner offset for children of high scorers 
would be only 35%. Thus, if the 1-line general threshold was 2, 
the threshold for children of clicked-on messages would be -1 
and the threshold for children of high scorers would be 1. 
A version of the interface with the simplified “extra context” 
control was released on August 29, 2006. Most people, who had 
already configured the advanced settings, did not try the 
simplified settings during a two week data collection period 
after the interface was released. Of the 39 users who did try the 
simplified settings, however, only three had switched back to 
advanced controls at the end of the data collection and only four 
had set the “extra context” to none, suggesting that the single 
control was sufficiently expressive for most users who tried it. 

Survey respondents generally praised the simplified controls. 
One wrote: “I really like the changes in late August, they made 
it much easier. Especially the extra controls thing, it's so much 
simpler.” Another wrote: “I really enjoy both the advanced and 
simplified interfaced, great improvement from the first test 
version!” The interface was not tested with new users, however, 
so we cannot be sure whether users who had never seen the 
advanced control panel would have understood the single “extra 
context” control or liked the alternative settings that it provided. 

4.3.2 Discussion 
Like point clustering, PCA has the advantage of automatically 
aggregating the preferences of many users. Relative to point 
clustering, the main advantage is that the simplified controls are 
easily interpreted as providing more or less of each reduced 
dimension. 

The main challenge is that it may not be obvious what to name 
the reduced controls, to convey to users what they are getting 
more or less of. In addition, like point clustering, dimension 
reduction depends on the existence of a distance metric among 
configurations such that nearby configurations are of similar 
utility to users. 

The use of PCA here is analogous its use in personalized 
recommendations, but with an important twist. For example, the 
factor analysis approach to recommending items [2] begins with 
a matrix whose elements are user’s ratings of items. That is 
analogous to our matrix X which gives user’s settings (levels) 
for each of the items (the original controls). Then, the factor 
analysis approach derives a set of underlying factors (analogous 
to our components in PCA). Each factor has weights for each of 
the items, and each person’s vector of ratings for the items is 
approximated by loadings or preferences for each of the factors.  

From here, however, the processes diverge. In conventional 
recommenders, the user never sees any representation of the 
principal components or factors. It is presumed that users can 
easily rate some individual items; the purpose of identifying 
factors or components is to extend a user’s expressed 
preferences to additional items beyond those that the user has 
rated. If we were to apply the standard recommender system 
approach directly, we would have users pick their settings on a 
few of the original controls and infer their preferred settings for 
the other controls. In our interface controls application, by 
contrast, each principal component becomes a reduced control 
that is visible to the user; the user manually inputs his or her 
preferences using the reduced controls. 

Having the user directly interact with the controls derived from 
the principal components, however, creates a constraint that they 
must be understandable. PCA worked reasonably well for the 
Slashdot case because the principal components produced 
composite controls that mapped to meaningful sets of the 
original controls. In applications where that is not the case, PCA 
may not be an effective technique. 
Another application where PCA might work well is browser 
security settings. Modern web browsers include a large number 
of configurable options about what the browser is allowed to do, 
ranging from allowing the innocuous inconvenience of popups 
to the extreme vulnerabilities of running unsigned plugins.  
Internet Explorer 7, for example, has over 40 configurable 
parameters, some with multiple possible settings. Many end-
users do not understand what all of the underlying parameters 

Table 2. Summary of approaches for Interface Controls Reduction. 

Name Preset sharing Point clustering PCA 

Description Users save and name 
complete configurations; 
export for others to use 

Divide users’ good configurations 
into clusters; centroid of each cluster 
becomes one configuration to share 

Apply principal component 
analysis; each retained 
component becomes one reduced 
control 

Advantages ·  Share with specific people 
·  Exact favorites 

·  Aggregate configurations 
·  Finds favorites that may not be 
ordered 

·  Aggregate configurations 
·  Each control is interpretable as 
less or more 

Challenges ·  Motivation to name and 
share 
·  Personal names may not 
be publicly understood 

·  Hard to name the cluster centroids 
·  Requires distance metric matched 
to user preferences 

·  Hard to name the dimensions 
·  Requires distance metric 
matched to user preferences 

Suitable 
Application 

·  Video compression 
settings 

·  Audio equalizer ·  Slashdot context filter settings 
   Browser security settings 

 



 

control.  Expert lead users might create various configurations 
but to convey their meanings to end-users it is probably 
necessary to array them on a single dimension of more or less 
secure. Indeed, Internet Explorer provides a single reduced 
control with values Medium, Medium-High, and High; as far as 
we know, however, the meaning of those settings was not 
determined through empirical analysis of the settings of expert 
lead users. 

5. Conclusion 
Our examples of Interface Controls Reduction show the 
potential for interface design to move towards a practice based 
on user-generated data.  The three methods we present, user-
contributed presets, point-clustering, and PCA, allow for a 
population of early users to indicate the useful space inside of a 
complicated interface design space and map it out for 
subsequent users. Together with other techniques such as 
automated widget selection and layout [9], our techniques 
contribute to an emerging toolkit for usage-driven interface 
design. 
Our case study with Slashdot indicates that some advanced users 
can come to grips with a complicated interface, and generate 
useful data indicating how to combine large numbers of 
controls.  In this case, we believe PCA was the most useful 
technique, but in other cases the methods of point clustering and 
preset sharing would be more appropriate.  Table 2 summarizes 
our assessment of the advantages and challenges of each 
approach. 

Some challenges are evident for ICR to become used widely as a 
tool for designers. Data acquisition of user behavior is not 
standardized across applications and toolkits, and must be 
integrated into an application with substantial development time 
and effort. Moreover, we had to make a number of application-
specific choices in our Slashdot study. As more experience 
accrues with ICR, analysis and design patterns may emerge that 
provide more guidance on these application-specific choices. 
The adoption of ICR could be accelerated by integrating data 
acquisition into a UI framework, and data analysis into a 
complementary GUI creation tool. Application interface design 
as an iterative methodology could then routinely include 
quantitative user-generated data as a source of feedback. 

Fortunately, modern web-based applications using server-side 
data logging provide an ideal platform for data acquisition from 
a user population, and these applications can be updated 
frequently and instantaneously without user interaction. As 
browser-based GUI applications become more popular, the data 
needed for ICR could easily become more readily available. 
This is a promising trend for the adoption of recommender 
systems for interface design. 
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